Fundamental Vibrations of Six- and Seven-membered Selenium Sulphide Ring Molecules

Risto Laitinen,* \dagger Ralf Steudel, and Eva-Maria Strauss
Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12, Bundesrepublik Deutschland

The fundamental vibrations of eleven possible six-membered selenium sulphide ring molecules $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$, as well as of all isomers of the two seven-membered rings $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$, have been calculated using an extended Urey-Bradley force field in order to support ongoing and future preparative work by providing a convenient method for characterizing the new products which can be prepared by a variety of chemical reactions. The calculated wavenumbers for SeS_{5} and $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ have been used to assign the Raman spectra for both compounds. In general, the results indicate that the stretching vibrations of various selenium sulphides are sufficiently different to allow identification of the species by a detailed analysis of their Raman spectra.

Raman spectroscopy has been shown to be a powerful tool for the study of homocyclic sulphur molecules $S_{n}(n=6-20)$, as the spectra of the different species are very characteristic, reflecting not only the molecule size and symmetry but also the bond-distance pattern. ${ }^{1}$ It is therefore possible to detect and identify single molecular entities even when investigating mixtures of several homologues. Because of the strong correlation between the wavenumbers of the stretching vibrations and the internuclear distances ${ }^{2,3}$ the bond lengths can be predicted from Raman data. The two known homocyclic selenium molecules, Se_{6} and Se_{8}, have also been characterized by Raman spectroscopy. ${ }^{4,5}$

The structural characterization of the sulphur-selenium binary system has turned out to be very problematic, because generally it is not possible to study pure stoicheiometric compounds, as different $\mathrm{Se}_{m} \mathrm{~S}_{n}$ species \ddagger of a given ring size tend to crystallize together forming solid solutions of complex molecular composition. ${ }^{6}$ As the sizes of sulphur and selenium atoms are similar, it is also probable that the ring molecules can assume a random orientation in the crystal lattice. Consequently, all selenium sulphide phases which have thus far been investigated by X-ray crystallography have disordered crystal structures ${ }^{6}$ and no accurate bond parameters (bond lengths and angles) have been obtained for them. At present it seems that X ray diffraction is an unsuitable means to identify and characterize cyclic selenium sulphides and that the most reliable structural information on this complex binary system can be obtained by vibrational analysis.

There have been several investigations on the Raman spectra of cyclic eight-membered selenium sulphides $\mathrm{Se}_{n} \mathrm{~S}_{8-n} \mathrm{n}^{7-12}$ The identification of $1,2,3-\mathrm{Se}_{3} \mathrm{~S}_{5}{ }^{11}$ and $\mathrm{SeS}_{7}{ }^{12}$ as the main components δf two mixed sulphur-selenium phases has enabled the force constants to be calculated by using an extended UreyBradley force field in the former case, and a valence force field in the latter case. In this paper the fundamental vibrations of cyclic six- and seven-membered $\mathrm{Se}_{m} \mathrm{~S}_{\boldsymbol{n}}$ molecules are investigated for the first time, following the recently reported preparation of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and SeS_{5} from bis(cyclopentadienyl)titanium pentasulphide and dichlorodiselane. ${ }^{13}$ An analogous reaction of [$\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Se}_{5}$] with $\mathrm{S}_{2} \mathrm{Cl}_{2}$ has been used to produce $1,2-\mathrm{Se}_{5}-$ $\mathrm{S}_{2}{ }^{14}$ In fact, the two titanocene compounds have opened a

[^0]

Figure 1. The numbering of atoms and bonds in the seven-membered ring molecule
convenient route to a wide variety of cyclic selenium sulphides which are either stoicheiometrically pure or relatively simple mixtures. Also, recent high-performance liquid chromatographic studies have indicated that the cyclic six- and sevenmembered selenium sulphides play a significant part in the sulphur-selenium melt. ${ }^{15}$ The present investigation supports the ongoing and future synthetic work in providing means to assign the Raman spectra of new selenium sulphide ring molecules.

Calculations

Molecular Geometry.-The isostructural $\mathrm{S}_{6}{ }^{16}$ and $\mathrm{Se}_{6}{ }^{17}$ molecules are found in the chair conformation as is SeS_{5} as judged by the similar morphology of the three crystals in question. ${ }^{13}$ Therefore the bond lengths and angles adapted from S_{6} and Se_{6} were employed in the calculation of the internal coordinates of all cyclic $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ molecules. The single value for the torsional angles was adjusted individually for each molecule as described earlier for $\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ molecules. ${ }^{10}$ The internal coordinates were thus: $r_{\mathrm{ss}}=206, r_{\mathrm{ses}}=221, r_{\mathrm{sese}}=236 \mathrm{pm}$, and $\alpha_{\mathrm{s}}=103$ and $\alpha_{\mathrm{se}}=101^{\circ}$. The torsional angles in different molecules ranged from 71.8 to 78.4° which agree closely with those observed for S_{6} and $\mathrm{Se}_{6}{ }^{16.17}$
The overall conformation of each seven-membered selenium sulphide molecule was assumed to be near to that of $\mathrm{S}_{7}{ }^{18}$ with one torsional angle approximately 0°. For both $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$ there are four possible isomers depending on the positions of the heteroatoms in the molecule. These isomers are named as follows: A (heteroatom positions 1 and 2); B

Table 1. Internal co-ordinates of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$

Bond ${ }^{\text {a }}$	Bond length/pm			Atom number	Bond angle ${ }^{a, b} /^{\circ}$
	SS ${ }^{\text {b }}$	SeS ${ }^{\text {c }}$	$\mathrm{SeSe}^{\text {c }}$		
1 and 2	205	220	234	1	Variable
3 and 4	210	225	239	2 and 3	102
5 and 6	200	215	229	4 and 5	105
7	218	233	247	6 and 7	107

${ }^{a}$ See Figure $1 .{ }^{b}$ Ref. 18. ${ }^{\text {c }}$ The single bond lengths of the SS and SeSe bonds have been estimated from $\mathrm{S}_{8}{ }^{d}$ and $\mathrm{Se}_{8},{ }^{e}$ respectively. The single bond length of the SeS bond is assumed to be the arithmetic mean of the SS and SeSe single bond lengths. The lengths of the SeSe and SeS bonds in various positions of the seven-membered ring molecule have been estimated by employing the results of a recent ab initio study. ${ }^{19}{ }^{d} \mathbf{P}$. Coppens, Y. W. Yang, R. H. Blessing, W. F. Cooper, and F. K. Larsen, J. Am. Chem. Soc., 1977, 99, 760; L. K. Templeton, D. H. Templeton, and A. Zalkin, Inorg. Chem., 1976, 15, 1999; Y. Watanabe, Acta Crystallogr., Sect. B, 1974, 30, 1396. ${ }^{e}$ P. Cherin and P. Unger, ibid., 1972, 28, 313; R. E. Marsh, L. Pauling, and J. D. McCullough, ibid., 1953, 6, 71; O. Foss and V. Janickis, J. Chem. Soc., Dalton Trans., 1980, 624.
for each molecule. The values of these angles in different isomers ranged from 85.8 to 95.2° in agreement with the corresponding angles in $\gamma-\mathrm{S}_{7}$ and $\delta-\mathrm{S}_{7} .^{18}$

Force Field.-The calculations were carried out with the extended Urey-Bradley force field which has successfully been applied to several homocyclic sulphur and selenium molecules, ${ }^{1,4,5}$ heterocyclic $\mathrm{S}_{7} \mathrm{NH}^{20}$ and $\mathrm{S}_{4}(\mathrm{NH})_{4}{ }^{21} \mathrm{~S}_{8} \mathrm{O},{ }^{22}$ and $\mathrm{S}_{4} \mathrm{~N}_{4} \cdot{ }^{23}$ This force field, as applied to cyclic selenium sulphides, has been described earlier. ${ }^{10}$ The $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ molecules require 811 force constants. Their values have been adapted from those of S_{6} and $\mathrm{Se}_{6}{ }^{*}$ and are given in Table 2.

Because of the inequivalence of the bonds in the sevenmembered ring molcule, four different stretching force constants are needed for every bond type depending on its location in the molecule. ${ }^{25}$ The unique torsional angle also demanded a force constant of its own. Therefore, 13-16 force constants are needed to describe adequately the force field in different isomers of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$. Their values are given in Table 2.
The calculations were performed by a CYBER 170-835

Table 2. The Urey-Bradley force constants ($\mathrm{N} \mathrm{cm}^{-1}$) for $\mathrm{Se}_{n} \mathrm{~S}_{6-n}, 1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$, and 1,2- $\mathrm{Se}_{5} \mathrm{~S}_{2}$
(a) $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$

Co-ordinate ${ }^{\text {a }}$	Force constant ${ }^{\text {b }}$			Force constant ${ }^{\text {b }}$		Co-ordinate ${ }^{a}$	Force constant ${ }^{\text {b }}$	
r (SeSe)	$K(\mathrm{SeSe})$	1.17	$\alpha_{\text {Se }}$	H (Se)	0.03		$F(\mathrm{SeSe})$	0.23
r (SeS)	K (SeS)	1.48	α_{s}	$H(\mathrm{~S})$	0.10	$q_{\text {seS }}$	$F(\mathrm{SeS})$	0.26
r(SS)	$K(\mathbf{S S})$	1.78	r / r at Se	$P(\mathrm{Se})$	0.16	$q_{\text {ss }}$	$F(\mathbf{S S})$	0.29

(b) $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$

Stretching force constants ${ }^{\text {c }}$				Torsion, bending, and interaction force constants ${ }^{\text {d }}$					
Co-ordinate ${ }^{\text {a }}$	$K(S S)$	$K($ SeS $)$	$K(\mathrm{SeSe})$	Co-ordinate ${ }^{\text {a }}$	Force	stant	Co-ordinate ${ }^{\text {a }}$	Force co	stant
$r_{1,2}$	1.87	1.59	1.31	τ_{1-6}	Y_{1}	0.05	r / r at S	$P(S)$	0.29
$r_{\text {3,4 }}$	1.40	1.19	0.98	t_{7}	Y_{2}	0.09	$q_{\text {seSe }}$	$F(\mathrm{SeSe})$	0.21
$r_{\text {5,6 }}$	2.41	2.05	1.69	$\alpha_{\text {se }}$	$H(\mathrm{Se})$	0.02	$q_{\text {ses }}$	$F(\mathrm{SeS})$	0.24
r_{7}	1.09	0.93	0.77	α_{s}	$H(\mathbf{S})$	0.08	$q_{\text {ss }}$	$D(\mathrm{SS})$	0.26
				r / r at Se	$P(\mathrm{Se})$	0.23	q^{\prime}	C	0.07

${ }^{a} r=$ Bond length, $\alpha=$ bond angle, $\tau=$ torsional angle, $q=$ distance between atoms i and $i+2$, and $q^{\prime}=$ distance between atoms i and $i+3$. For the numbering of the bonds in the seven-membered molecule see Figure $1 .{ }^{6} K(X X), H(X), P(X)$, and $F(X X)(X=S$ or Se$)$ are the refined force constants of Se_{6} and S_{6}; other force constants are estimated as mean values of the corresponding force constants of Se_{6} and $\mathrm{S}_{6}{ }^{c} K(S S)$ taken from $\mathrm{S}_{7}{ }^{25} K(\mathrm{SeS})$ and $K(\mathrm{SeSe})$ have been scaled from $K(\mathrm{SS})$ as follows: $K(\mathrm{SeS})=0.85 K(\mathrm{SS}) ; K(\mathrm{SeSe})=0.75 K(\mathrm{SS}) .{ }^{10}$ d The torsion force constants are from $\mathrm{S}_{7} ;{ }^{25}$ other force constants are from our previous calculations on $\mathrm{Se}_{n} \mathrm{~S}_{8-\pi^{-}}{ }^{10}$
(positions 2 and 4); C (positions 4 and 6); and D (positions 6 and 7). For the numbering of the atoms and bonds in the cyclic seven-membered molecule see Figure 1.

The SS bond lengths were taken from $S_{7}{ }^{18} \mathrm{~A}$ recent theoretical study ${ }^{19}$ shows that the lengths of $\mathrm{SS}, \mathrm{SeS}$, and SeSe bonds vary similarly as a function of the torsional angle. These conclusions were applied in the estimation of the SeS and SeSe bond lengths in different parts of the seven-membered ring molecule. All bond angles were taken from $S_{7}{ }^{18}$ regardless of the type of atom in each site. The bond lengths and angles used in the calculations for the seven-membered molecules are given in Table 1.

Because of the lack of symmetry in isomers $\mathrm{A}-\mathrm{C}$ the unique torsional angle τ_{7} (subscript refers to bond number of central bond defining torsional angle; see Figure 1) is not necessarily equal to 0°. The effect of this torsional angle in these isomers was studied by calculating the fundamental vibrations for three different values of $\tau_{7}\left(-10,0\right.$, and $\left.+10^{\circ}\right)$. Because of the C_{s} symmetry of isomer D, τ_{7} was restricted to the value of 0°. The other torsional angles $\left(\tau_{1}-\tau_{6}\right)$ were again adjusted individually
computer using the programs by Schachtschneider ${ }^{26}$ and Shimanouchi. ${ }^{27}$

Results and Discussion

$\mathrm{Se}_{n} \mathrm{~S}_{6-n}$.-The fundamental vibrations calculated for the eleven $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ molecules are shown in Table 3. In agreement with $\mathrm{Se}_{n} \mathrm{~S}_{8-n} \mathrm{~S}_{6-n}$ rings, ${ }^{10}$ the SS stretching vibrations lie at 463437, the SeS modes at 382-324, and the SeSe stretching modes at $253-209 \mathrm{~cm}^{-1}$. The bending and the torsional modes are found at higher wavenumbers for six- than eight-membered species ${ }^{10}$ and overlap the SeSe stretching region more severely.

[^1]Table 3. Fundamental vibrations (cm^{-1}) of cyclic $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ molecules

 (SəS)^ ${ }^{\bullet} 9$ 0ヤを $324 a_{m}, v(\mathrm{SeS})$ $240 b_{u}, \delta$
$224 a_{g}, \delta$
$190 b_{g}, \delta$
$167 a_{u}, \delta, \tau$
$132 a_{g}, \delta$
$127 b_{m} \tau$ ∞
0
0
$=$

SeS_{5} $\left(C_{s}\right)$	$\underset{\left(C_{2}\right)}{1,2-\mathrm{Se}_{2} \mathbf{S}_{4}}$	$\begin{gathered} 1,3-\mathrm{Se}_{2} \mathrm{~S}_{\mathbf{4}} \\ \left(C_{3}\right) \end{gathered}$	$\frac{1,4-\mathrm{Se}_{2} \mathrm{~S}_{4}}{\left(C_{2 n}\right)}$	$\begin{gathered} 1,2,3-\mathrm{Se}_{3} \mathrm{~S}_{3} \\ \left(C_{s}\right) \end{gathered}$	$\underset{\left(C_{1}\right)}{1,2,4-\mathrm{Se}_{3} \mathrm{~S}_{3}}$	$\underset{\left(C_{3 v}\right)}{1,3,5-\mathrm{Se}_{3} \mathrm{~S}_{3}}$	$\underset{\left(C_{2}\right)}{1,2-\mathrm{Se}_{4} \mathbf{S}_{\mathbf{2}}}$	$\frac{1,3-\mathrm{Se}_{4} \mathbf{S}_{\mathbf{2}}}{\left(C_{\mathrm{s}}\right)}$	$\frac{1,4-S e_{4} S_{2}}{\left(C_{2 n}\right)}$	$\mathrm{Se}_{3} \mathrm{~S}$ $\left(C_{s}\right)$
$\begin{aligned} & 463 a^{\prime \prime}, v(S S) \\ & 461 a^{\prime}, v(S S) \end{aligned}$										
	$455 b$, v(SS)			$454 a^{\prime \prime}, \mathrm{v}$ (SS)						
	$454 a, v(S S)$	$456 a^{\prime}, \mathrm{v}$ (SS)	$452 a_{0}, \mathrm{v}$ (SS)							
$448 a^{\prime}, \mathrm{v}$ (SS)	$447 a, \mathrm{v}$ (SS)	$447 a^{\prime \prime}, \mathrm{v}$ (SS)	$448 a_{w}, \mathrm{v}(\mathrm{SS})$	$449 a^{\prime}, \mathrm{v}(\mathrm{SS})$	$449 a, \mathrm{v}$ (SS)		$450 a, \mathrm{v}(\mathrm{SS})$			
$437 a^{\prime \prime}, v(S S)$										
$376 a^{\prime}, v(S e S)$		$380 a^{\prime}, \mathrm{v}$ (SeS)	$381 b_{w}, v($ SeS $)$		$375 a, v(S e S)$	$381 a_{1}, \mathrm{v}$ (SeS)		$375 a^{\prime}, \mathrm{v}(\mathrm{SeS})$		
		$369 a^{\prime \prime}, v($ SeS $)$	$368 a_{g}$, v(SeS)			$370 e, v(S e S)$			$362 a_{g}, \mathrm{v}$ (SeS)	
	$356 a, v(S e S)$			$359 a^{\prime}, \mathrm{v}(\mathrm{SeS})$	$358 a, v(S e S)$		$359 b, v(S e S)$	$353 a^{\prime \prime}, \mathrm{v}$ (SeS)	$357 b_{\mathrm{w}} \mathrm{v}$ (SeS)	$358 a^{\prime}, \mathrm{v}(\mathrm{SeS})$
	$352 b, v(S e S)$			$349 a^{\prime \prime}, v($ SeS $)$	$348 a, v(S e S)$		$347 a, v(S e S)$	$352 a^{\prime}, v(S e S)$	$345 a_{\text {w, }}$ v v (SeS $)$	$345 a^{\prime \prime}, v($ SeS $)$
$332 a^{\prime \prime}, v($ SeS $)$		$338 a^{\prime}, v(\mathrm{SeS})$	$340 b_{\boldsymbol{p}}, v(\mathrm{SeS})$		$330 a, v(S e S)$	$335 e, v(\mathrm{SeS})$			$341 b_{g}, v($ SeS $)$	
		$324 a^{\prime \prime}, v(\mathrm{SeS})$	$324 a_{x} v(\mathrm{SeS})$			$318 a_{2}, v(\mathrm{SeS})$		$327 a^{\prime \prime}, v(S e S)$		
$284 a^{\prime}, \delta$										
	270 b, δ									
		$259 a^{\prime}, \delta$		$255 a^{\prime}, \delta$			$253 a, v(S e S e)$			$253 a^{\prime}$, v(SeSe)
$250 a^{\prime}, \delta, \tau$	$242 a, \delta$		$240 b_{w}, \delta$	$242 a^{\prime}, \mathrm{v}$ (SeSe)				$245 a^{\prime}, \mathrm{v}(\mathrm{SeSe})$		$237 a^{\prime \prime}$, v(SeSe)
	$232 a, \mathrm{v}$ (SeSe)				$231 a, ~ v(S e S e)$		$232 b, v(S e S e)$		$233 a_{0}, v($ SeSe $)$	
		$226 a^{\prime}, \delta$	$224 a_{0}, \delta$	$\begin{aligned} & 224 a^{\prime}, \delta \\ & 220 a^{\prime \prime}, v(S e S e) \end{aligned}$	$228 a, \delta$	$226 a_{1}, \delta$			$228 a_{u}, v($ SeSe $)$	$227 a^{\prime}, \mathrm{v}$ (SeSe)
				$220 a^{\text {a }}$, v(SeSe)	$210 a, \delta$		$210 a, v(\mathrm{SeSe})$	$218 a^{\prime \prime}, v(\mathrm{SeSe})$ $207 a^{\prime}, \delta$		$209 a^{\prime \prime}, \mathrm{v}$ (SeSe)
$200 a^{\prime \prime}, \delta$			$190 b_{g}, \delta$				$200 a, \delta$			
$171 a^{\prime \prime}$, τ	$178 a, \delta$					$176 a_{1}, \delta$		$171 a^{\prime}, \delta$	$182 a_{g}, \delta$	$184 a^{\prime}, \delta$
$161 a^{\prime}, \delta$	$160 b, \tau, \delta$	$167 a^{\prime}, \delta$	$167 a_{\mu}, \delta, \tau$		$160 a, \delta$					$156 a^{\prime}, \delta$
$149 a^{\prime}, \tau, \delta$		$151 a^{\prime \prime}$, δ		$149 a^{\prime \prime}, \delta$		$145 e, \delta$				
		$141 a^{\prime}, \delta$			$140 a, \delta, \tau$			$142 a^{\prime \prime}, \delta$	$140 a_{g}, \delta$	
	$137 b, \delta$	$138 a^{\prime \prime}$, τ	$132 a_{0}, \delta$	$136 a^{\prime \prime}, \tau, \delta$					$135 b_{w} \tau$ т, δ	
	$124 a, \delta, \tau$		$127 b_{w}$, τ	$127 a^{\prime}, \delta$	$122 a, \delta$	$126 e, \delta, \tau$	$\begin{aligned} & 123 b, \delta \\ & 119 a, \delta \end{aligned}$	$129 a^{\prime \prime}, \delta$		$116 a^{\prime}, \delta$
				$110 a^{\prime}, \delta, \tau$	$113 a, \delta$		$111 b, \tau, \delta$	$114 a^{\prime}, \delta$	$109 b_{\text {e }}, \delta$	
							$106 a, \delta$			$106 a^{\prime \prime}, \delta$
								$100 a^{\prime}, \tau, \delta$		$105 a^{\prime}, \tau$
									$98 a_{w}, \delta, \tau$	$95 a^{\prime \prime}, \delta, \tau$

Figure 2. The Raman spectrum of SeS_{5} recorded at $-110^{\circ} \mathrm{C}$

Table 4. Assignment of the Raman spectrum (cm^{-1}) of SeS_{5}

Obs.	Calc.*	Difference	Assignment
470vs	473	-3	$a^{\prime}, \mathrm{v}(\mathrm{SS})$
464w	467	-3	$a^{\prime \prime}, \mathrm{v}(\mathrm{SS})$
459w	447	12	$a^{\prime}, \mathrm{v}(\mathrm{SS})$
419m	425	-6	$a^{\prime \prime}, \mathrm{v}(\mathrm{SS})$
378s	379	-1	$a^{\prime}, \mathrm{v}(\mathrm{SeS})$
361 vw			$\mathrm{Se}_{\boldsymbol{n}} \mathrm{S}_{8-n}$ impurity
335m	335	0	$a^{\prime \prime}, \mathrm{v}(\mathrm{SeS})$
290vw	283	7	a^{\prime}, δ
267vw			$\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ impurity
246vvs	253	-7	a^{\prime}, δ
197s	203	-6	$a^{\prime \prime}, \delta$
191s	183	8	$a^{\prime \prime}, \tau, \delta$
161s	162	-1	$a^{\prime}, \boldsymbol{\delta}$
148vw	148	0	a^{\prime}, τ, δ
$\begin{aligned} & 95 w \\ & 82 \mathrm{~m} \end{aligned}$			Lattice vibrations
72w $55 / 51 \mathrm{~m}$			Lattice vibrations

* Refined Urey-Bradley force constants ($\mathrm{N} \mathrm{cm}^{-1}$): $K(\mathrm{SeS})=1.561$, $K(\mathrm{SS})=1.797, H(\mathrm{Se})=0.038, H(\mathrm{~S})=0.162, Y=0.054, \quad P(\mathrm{Se})=$ $0.223, P(S)=0.278, F(S e S)=0.217$, and $F(S S)=0.141$.

The presence or absence of the SeSe bonds can, however, be deduced from the magnitude of the splitting in the SeS stretching vibrations as shown earlier in the case of $\mathrm{Se}_{n} \mathrm{~S}_{\mathbf{8 - n}}$ molecules. ${ }^{10}$

The overall similarity of the Raman spectra of most $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ species renders the characterization of mixtures difficult, $c f$. the case of mixed $\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ phases. ${ }^{10}$ Purely stoicheiometric compounds and the main components of simple mixtures can, however, be identified as exemplified by $1,2,3-\mathrm{Se}_{3} \mathrm{~S}_{5}{ }^{11}$ and $\mathrm{SeS}_{7}{ }^{12}$

The Raman spectrum of $\mathrm{SeS}_{\mathbf{s}}$ is shown in Figure 2. There are four Raman lines in the SS stretching region. The very strong line at $470 \mathrm{~cm}^{-1}$ is assigned to a symmetric SS stretch, the

Figure 3. The Raman spectrum of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ recorded at $-110{ }^{\circ} \mathrm{C}^{13}$
calculated value for which is $461 \mathrm{~cm}^{-1}$. The other three lines are assigned to the nearest calculated vibrations. In the SeS stretching region the weak line at $361 \mathrm{~cm}^{-1}$ is probably caused by a small amount of $\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ known to be present in the sample, as these molecules produce an intense Raman line in this region. ${ }^{11}$ The wavenumbers of the two remaining lines imply the presence of only two SeS bonds in the $\mathrm{Se}_{n} \mathrm{~S}_{6-n}$ molecule. Their wavenumbers coincide with the values calculated for the symmetric and asymmetric SeS stretching vibrations of SeS_{5}. The SeSe stretching vibrations, bending, and torsional modes are less straightforward to assign. The weak line at $267 \mathrm{~cm}^{-1}$ is probably due to the intense Raman line of the SeSe stretching in the $\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ impurity. The strong Raman line at $246 \mathrm{~cm}^{-1}$ was assigned to a fully symmetric ring-deformation mode the calculated value for which is $250 \mathrm{~cm}^{-1}$. For S_{6} the corresponding vibration lies at $262 \mathrm{~cm}^{-1} .{ }^{24}$ All other Raman lines were paired off with the nearest calculated wavenumbers. Lines below 148 cm^{-1} were assigned to lattice vibrations.

The least-squares refinement of the nine Urey-Bradley force constants resulted in good agreement between the observed and calculated wavenumbers (largest deviation $12 \mathrm{~cm}^{-1}$) and in reasonable values of both the Urey-Bradley and the valence force constants. The assignment of the Raman spectrum of SeS_{5} is shown in Table 4.
$1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and 1,2-Se S_{2}. -The fundamental vibrations of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$ isomers are shown in Tables 5 and 6. The stretching modes are sensitive to the positions of the particular bonds in the molecule (compare $\mathrm{S}_{7}{ }^{25}$). The unique torsional angle has a notable effect not only on the torsional modes but also on many stretching and bending modes. The similarity of the bending and torsion regions restricts the initial assignment to the stretching vibrations only.

The Raman spectrum of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ is shown in Figure 3. The strong lines at 339 and $304 \mathrm{~cm}^{-1}$ must be produced by two rather long SeS bonds implying isomer C (see Table 5) as suggested earlier. ${ }^{13}$ The SeS stretching modes of all other isomers occur at higher wavenumbers, ruling out especially isomers B and D (the two SeS stretches occur at 395 and 348 cm^{-1} for isomer B and at 412 and $383 \mathrm{~cm}^{-1}$ for isomer D). It is difficult to rule out isomer A even though the SeS stretching

Table 5. The fundamental vibrations (cm^{-1}) of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ isomers

${ }^{a}$ The subscripts a-d refer to symmetry $\left(C_{s}\right)$ related bonds: a, bonds 1 and 2 ; b, bonds 3 and $4 ; \mathrm{c}$, bonds 5 and 6 ; d, bond 7 . ${ }^{b}$ Ref. 25 .

Table 6. The fundamental vibrations (cm^{-1}) of $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$ isomers

Isomer A			Isomer B			Isomer C			Isomer D*
	\cdots	?	$\stackrel{ }{ }$	$\underbrace{}_{0}$			$\underbrace{}_{0}$		
$\tau_{7}=-10$	0	10°	$\tau_{7}=-10$	0	10°	$\tau_{7}=-10$	0	10°	$\tau_{7}=0^{\circ}$
$472 \mathrm{v}_{1}$						$513 v_{5}$	$515 v_{5}$	$515 \mathrm{v}_{5}$	
	$463 v_{1}$	$458 \mathrm{v}_{1}$							
			$428 \mathrm{v}_{3}$	$418 \mathrm{v}_{5,3}$	$420 v_{3}$				$424 a^{\prime \prime}, v_{\text {c }}$
			$400 v_{5}$	$392 v^{3.5}$	$389 \mathrm{v}_{5}$				$403 a^{\prime}, v_{\text {c }}$
$\begin{aligned} & 346 v_{2} \\ & 331 v_{3} \end{aligned}$	$\begin{aligned} & 350 v_{2,3} \\ & 328 v_{3.2} \end{aligned}$	$\begin{aligned} & 359 v_{2,3} \\ & 313 v_{3,2} \end{aligned}$	$342 \mathrm{v}_{1}$	$356 v_{1}$	$353 v_{1}$				$350 a^{\prime}, v_{\text {d }}$
						$\begin{aligned} & 330 v_{3} \\ & 297 v_{7} \end{aligned}$	$\begin{aligned} & 330 v_{3} \\ & 301 v_{7} \end{aligned}$	$\begin{aligned} & 328 v_{3} \\ & 300 v_{n} \end{aligned}$	
$\begin{aligned} & 281 v_{6} \\ & 271 v_{5} \end{aligned}$	$\begin{aligned} & 281 v_{6} \\ & 273 v_{5} \end{aligned}$	$\begin{aligned} & 283 v_{6} \\ & 279 v_{5} \\ & 261 \tau, v_{5} \end{aligned}$	$280 v_{6}$	$280 v_{6}$	$280 v_{6}$				
						$270 v_{6}$	$272 v_{6}$	$271 v_{6}$	$260 a^{\prime \prime}, v_{\text {a }}$
	247 т		$254 \mathrm{v}_{2}$	$254 \mathrm{v}_{2}$	$254 \mathrm{v}_{2}$	$249 \mathrm{v}_{2}$	$252 \mathrm{v}_{2}$	$252 \mathrm{v}_{2}$	$247 a^{\prime}, v_{\text {a }}$
2368	231δ, τ	$2418, v_{3}$			236 ס	$232 v_{1}$	$239 \mathrm{v}_{1}$	$242 \mathrm{v}_{1}$	
			216 ס	225 ס	221 \%, τ	$212 \mathrm{\tau}$, δ	222 \%, τ	224 \%, τ	$225 a^{\prime \prime}$, τ, δ
$211 \mathrm{v}_{4}$	$210 v_{4}$	$210 v_{4}$	$207 \mathrm{v}_{4}$	$\begin{aligned} & 206 v_{4} \\ & 201 \tau \end{aligned}$	$205 v_{4}$	$199 \mathrm{v}_{4}$	$202 v_{4}$	$201 v_{4}$	$209 a^{\prime}, v_{b}$
204 ס									$206 a^{n}, \delta$
$186 \mathrm{v}_{7}$	$186 v_{7}$	$186 \mathrm{v}_{7}$	$\begin{aligned} & 188 v_{7} \\ & 187 \delta, \tau \end{aligned}$	$188 \mathrm{v}_{7}$	$188 \mathrm{v}_{7}$	190 ס	197τ ¢ δ	198 \%, τ	$198 a^{\prime \prime}, v_{\mathrm{b}}$
$152 \delta, \tau$	1528 , τ	1538	154 ס	154 ס	154 ס		152δ	149 ס	$146 a^{\prime}, \delta$
138 ס	137 ס	1368	146 т	147δ, τ	146τ	144 ס	138 ס	147 ס	$143 a^{\prime}, \delta$
						125 ס			143 ,

Table 6 (continued)

Isomer A			Isomer B			Isomer C			Isomer $\mathrm{D}^{*}$$\tau_{7}=0^{\circ}$
$\tau_{7}=-10$	0	10°	$\tau_{7}=-10$	0	10°	$\tau_{7}=-10$	0	10°	
1168	115 \%	1158	117 ס	1168	1158 , ธ		117δ	115 ס	$115 a^{\prime}$, г
1128	1118	1108	114δ	1138	1128		1128	1118	$109 a^{\prime \prime}, \delta$
99 ס	98 ס	96 ס	98δ, τ	99 ס	99δ, τ	98 ס	95 т	97δ, τ	$99 a^{\prime}, \tau, \delta$
						89 ¢, τ	87 т	89 т, δ	83a", δ, 七
84δ, τ	85δ, τ	$86 \delta, \tau$	86δ, τ	86δ, τ	86 т	86τ ¢ δ			

* Subscripts a-d refer to symmetry $\left(C_{3}\right)$ related bonds: a, bonds 1 and $2 ; b, 3$ and $4 ; c, 5$ and 6; d, 7 .

Table 7. Assignment of the Raman spectrum (cm^{-1}) of $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ (isomer $\mathrm{C}, \tau_{7}=-10^{\circ}$)

Obs.	Calc.*	Difference	Assignment
511 m	511	0	$\mathbf{v}_{6}(\mathrm{SS})$
505 (sh)			$479+27$
479s	479	0	$\mathrm{v}_{1,2}(\mathrm{SS})$
459vw			$228+228$
425vw	425	0	$\mathrm{v}_{4}(\mathrm{SS})$
393w	393	0	$\mathbf{v}_{\mathbf{2 , 4}}(\mathrm{SS})$
372vw			
357vw			$219+136$
339vs	339	0	$\mathbf{v}_{\mathbf{3}}(\mathrm{SeS}$)
304vs	305	-1	$\mathrm{v}_{7}(\mathrm{SeS})$
276 (sh)	283	-7	$v_{5}(\mathrm{SeSe}), \delta$
271m	270	1	$v_{5}(\mathrm{SeSe})$
259w	253	6	δ, $v_{5}(\mathrm{SeSe})$
242w			$219+27$
228s	225	3	δ
219vs	218	1	δ
179w	169	10	δ
155vw			
149m	155	-6	δ
136 m	134	2	δ
113 m	123	-10	δ, τ
$\left.\begin{array}{l} 98 \mathrm{vw} \\ 79 \mathrm{w} \\ 77 \mathrm{w} \end{array}\right)$			Lattice vibrations
72vw			
59w			
47w			
34w			
27vs			

*Refined Urey-Bradley force constants (N cm ${ }^{-1}$): $K_{1,2}(\mathbf{S S})=1.611$, $K_{3}(\mathrm{SeS})=1.410, K_{4}(\mathrm{SS})=1.439, K_{5}(\mathrm{SeSe})=1.520, K_{6}(\mathrm{SS})=2.301$, $K_{7}(\mathrm{SeS})=0.902$ (the subscripts refer to the bond numbers); $H(\mathrm{Se})=$ $0.052, H(\mathrm{~S})=0.084, Y_{1-6}=0.079, Y_{7}=0.140, P(\mathrm{Se})=0.128, P(\mathrm{~S})=$ $0.224, F(\mathrm{SeS})=0.371, F(\mathrm{SS})=0.190$, and $C=0.084$.
modes seem to be at too high wavenumbers and the stretching vibration of the unique SS bond $\left(r_{\text {ss }}\right)$ which produces a fairly strong Raman line at $362 \mathrm{~cm}^{-1}$ in $\mathrm{S}_{7}{ }^{23}$ is absent in the spectrum in Figure 3. Therefore the calculated wavenumbers of both isomers A and C were adjusted to the observed Raman lines by refining the Urey-Bradley force constants. The refinement converged to reasonable (all positive) values of all force constants only for isomer C with τ_{7} at $-10{ }^{\circ} \mathrm{C}$. The largest deviation between the observed and calculated wavenumbers is $10 \mathrm{~cm}^{-1}$.
The assignment of the Raman spectrum according to isomer C is shown in Table 7. The two weak features at 372 and 155 cm^{-1} cannot be explained by these calculations and are probably caused by a small amount of $\mathrm{Se}_{n} \mathrm{~S}_{8-n}$ in the sample. The final Urey-Bradley and valence force constants agree well or bear a reasonable relationship with the corresponding force constants of $\mathrm{S}_{7}{ }^{25}$

Conclusions

The preparative work involving $\left[\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~S}_{5}\right]$ or $\left[\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-\right.$ Se_{5}] has opened a simple route to a variety of cyclic six- and seven-membered selenium sulphides. In this work the suitability of Raman spectroscopy in the identification of these species has been demonstrated.
The fundamental vibrations of all $\mathrm{Se}_{n} \mathrm{~S}_{6-n}(n=1-5)$ and of all isomers of both $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and $1,2-\mathrm{Se}_{5} \mathrm{~S}_{2}$ have been calculated using the extended Urey-Bradley force field. The calculated wavenumbers have been compared to the observed Raman spectra of SeS_{5} and $1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$ and resulted in the complete assignment of these spectra. The refined force constants of both species agree well with those of the related sulphur and selenium molecules demonstrating the reliability of the vibrational analysis (see Table 8).
Our calculations show that it is possible to identify pure

Table 8. Selected valence force constants ($\mathrm{N} \mathrm{cm}^{-1}$) for some homo- and hetero-cyclic sulphur molecules

Force constant ${ }^{\text {a }}$	SeS_{5}	$1,2-\mathrm{Se}_{2} \mathrm{~S}_{5}$	$\mathrm{S}_{6}{ }^{\text {b }}$	$\mathrm{S}_{7}{ }^{\text {c }}$	$\mathrm{S}_{8}{ }^{\text {d }}$	$\mathrm{Se}_{8}{ }^{\text {e }}$	$\mathrm{S}_{8}+\mathrm{SeS}_{7}{ }^{f}$	1,2,3-Se $\mathbf{3} \mathrm{S}_{5}{ }^{9}$
f_{r} (SeSe)		$2.06{ }^{\text {h }}$				1.70		1.78
$f_{r}(\mathrm{SeS})$	1.70	1.53-1.85					1.850	1.96
$f_{r}(\mathbf{S S})$	1.96-2.00	1.75-2.68	2.24	$1.51-2.73$	2.41		2.061	$2.21-2.27$
f_{α} at Se	0.10	0.27				0.17	0.207	0.15-0.17
f_{α} at S	0.22-0.26	$0.17-0.42$	0.23	$0.26-0.31$	0.25		0.223	0.22-0.24
f_{5}	0.05-0.06	0.04-0.13	0.05	$0.06-0.08$	0.03	0.03	$0.027-0.036$	$0.03-0.04$
$f_{r r}$	0.32-0.42	0.43-0.54	0.53	$0.46-0.50$	0.60	0.39	$0.302-0.432$	0.52-0.57
$f_{r a}$	$0.06-0.10$	$0.10-0.26$	0.22	$0.14-0.20$	0.18	0.14	0.07	0.13-0.19

${ }^{a} f_{i}=$ Diagonal force constant; $f_{i j}=$ interaction between the nearest neighbours. ${ }^{b}$ Ref. $24 .{ }^{〔}$ Ref. 25. ${ }^{d}$ R. Steudel and H-J. Mäusle, Z. Naturforsch., Teil $A, 1978,33,951 .{ }^{e}$ Ref. 5. ${ }^{5}$ Ref. 12. ${ }^{\boldsymbol{g}}$ Ref. 11. ${ }^{h}$ Bond number 5, see Figure 1.
compounds and the main components of the relatively simple mixtures by inspecting the stretching vibrations. Particularly with the seven-membered ring molecules, the stretching modes provide a sensitive test not only for the molecular species but also for the actual solid-state isomer.

Acknowledgements

A research fellowship from Alexander von Humboldt Foundation (to R. L.) as well as support by the Deutsche Forschungsgemeinschaft, by the Massachusetts Institute of Technology Special Fund of The Technical University of Berlin, and by the Senator für Wirtschaft des Landes Berlin are gratefully acknowledged.

References

1 R. Steudel, Top. Curr. Chem., 1982, 102, 149.
2 R. Steudel, Angew. Chem., 1975, 87, 683; Angew. Chem., Int. Ed. Engl., 1975, 14, 655.
3 R. Steudel, Z. Naturforsch., Teil B, 1975, 30, 281.
4 K. Nagata, K. Ishibashi, and Y. Miyamoto, Jpn. J. Appl. Phys., 1981, 20, 463.
5 R. Steudel, Z. Naturforsch., Teil A, 1975, 30, 1481.
6 R. Steudel and R. Laitinen, Top. Curr. Chem., 1982, 102, 177; Gmelin Handbuch der Anorganische Chemie, 'Selenium,' Suppl. B2, 8th edn., Springer, Berlin, Heidelberg, New York, 1984, p. 280.
7 A. T. Ward, J. Phys. Chem., 1968, 72, 4133.
8 H. H. Eysel and S. Sunder, Inorg. Chem., 1979, 18, 2626.

9 R. Laitinen, L. Niinistö, and R. Steudel, Acta Chem. Scand., Ser. A, 1979, 33, 737.
10 R. Laitinen and R. Steudel, J. Mol. Struct., 1980, 68, 19.
11 R. Laitinen, N. Rautenberg, J. Steidel, and R. Steudel, Z. Anorg. Allg. Chem., 1982, 486, 116.
12 H. H. Eysel, J. Mol. Struct., 1982, 78, 203.
13 R. Steudel and E-M. Strauss, Angew. Chem., 1984, 96, 356; Angew. Chem., Int. Ed. Engl., 1984, 23, 362.
14 R. Steudel, M. Papavassiliou, and E-M. Strauss, unpublished work. 15 E-M. Strauss, R. Laitinen, and R. Steudel, unpublished work.
16 J. Steidel, J. Pickardt, and R. Steudel, Z. Naturforsch., Teil B, 1978, 33, 1554.
17 Y. Miyamoto, Jpn. J. Appl. Phys., 1980, 19, 1813.
18 R. Steudel, J. Steidel, J. Pickardt, F. Schuster, and R. Reinhardt, Z. Naturforsch., Teil B, 1980, 35, 1378.
19 R. Laitinen and T. Pakkanen, J. Mol. Struct., 1983, 91, 337; in the press.
20 R. Steudel, J. Phys. Chem., 1977, 81, 343.
21 R. Steudel and F. Rose, Spectrochim. Acta, Part A, 1977, 33, 979.
22 R. Steudel and D. F. Eggers, Spectrochim. Acta, Part A, 1975, 31, 871.
23 R. Steudel, Z. Naturforsch., Teil A, 1981, 36, 850.
24 L. A. Nimon and V. D. Neff, J. Mol. Spectrosc., 1968, 26, 175.
25 R. Steudel and F. Schuster, J. Mol. Struct., 1978, 44, 143.
26 J. H. Schachtschneider, 'Vibrational Analysis of Polyatomic Molecules V,' Shell Development Co., Emeryville, CA, Rep. No. 213-64.
27 T. Shimanouchi, 'Computer Programs for Normal Coordinate Treatment of Polyatomic Molecules,' Tokyo, 1968 (distributed privately).

[^0]: \dagger Permanent address: Department of Chemistry, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
 \ddagger In the $\mathrm{Se}_{m} \mathrm{~S}_{n}$ compounds, for convenience, the numbered atoms in formulae are those for which m or n is the lowest, whether S or Se .

[^1]: * The values of the five force constants K (stretching), H (bending), Y (torsion), P (bond-bond interaction), and F (repulsion between atoms i and $i+2$) for both molecules were obtained by least-squares fitting to the observed wavenumbers. ${ }^{4,24}$ The largest deviations between the observed and calculated wavenumbers amounted to 6 and $9 \mathrm{~cm}^{-1}$ for S_{6} and Se_{6}, respectively.

